Search

Site Search

Athlete Search

WOD Search

Photo Search

Additional References
Whiteboard

 

 

 

Athlete Profiles
  • A (3)
  • AWOL (3)
  • B (8)
  • C (2)
  • F (3)
  • H (1)
  • J (3)
  • K (4)
  • L (1)
  • M (2)
  • P (3)
  • R (1)
  • S (5)
  • T (1)
  • W (3)
  • Z (1)

More Program than Gym

See the editorial here.


 

Entries in vj (3)

Thinking Out Loud: Engineer State of Mind

by, VJ Tocco

Too many people cringe when they hear the word engineering. This reaction is probably caused by painfully unfunny sitcoms like “The Big Bang Theory”, which conjures caricatures of dweeby engineers whose idea of fun is solving Rubik’s cubes for time. I used to resist becoming an engineer for fear that I would maybe one day find programming my calculator to tell a stupid joke enchanting or that one day I would understand all those complicated mathematical formulas with the Greek letters.

Against my preconceptions, I declared Chemical Engineering as my major when I was a sophomore at the University of Michigan about 8 years ago. During the first few weeks of classes, I was surprised and relieved that many of my classmates were “normal”. Most of them did not memorize pi to 50 digits or read Stephen Hawking’s books. Shockingly, I met a few students whose interests (sports, rap music, etc.) aligned with mine.

When people learn that I will soon have a Ph.D. in Chemical Engineering, they treat me similar to how I used to treat engineers. They say things like “you don’t look like an engineer”, or “wow, I could never understand what you do.”  I tend to disagree with both of these statements. If you think all engineers look the same, you’ve seen too many episodes of “Silicon Valley.” If you believe you could never think like an engineer, you’re selling yourself short.

At its core, engineering is nothing more than solving a problem in the most efficient way possible that satisfies all the constraints.  We solve problems as an engineer would more often than you realize.  You think like an engineer when you choose to buy a 4-pack of canned tuna for $3 instead of 4 individual cans for $1 apiece.  You may not calculate the exact cost-per-can difference ($1 vs 75 cents), but something in your brain tells you that the 4-pack is a better deal. In this example, you are solving a problem (you want some tuna), subject to the constraints (you must buy tuna at the grocery store), efficiently (you choose the tuna that gives you the best deal).

Sometimes, we don’t think like an engineer, even though we should.. How many times have you driven around the block in search of the cheapest gasoline? Consider the following two options: a nearby gas station is selling gas for $2.60 per gallon, while a station 2.5 miles away is offering a price of $2.50 per gallon.  Which would you choose? Would you even consider that during your fill-up you will only buy about 10 gallons of gas, and therefore only save $1? Not to mention the extra 5 miles you’ve put on your car (for the round trip), the time you’ve spent driving 5 miles, AND the gas you consume driving those 5 miles. Going to either gas station will solve your problem by filling up your tank, but the closer, more expensive station is clearly more efficient than the further, cheaper station.

Driving somewhere on the freeway is another example of a simple problem which you can solve like an engineer. Imagine you want to make a 100-mile journey as fast as possible. You intuitively know that the amount of time it takes to travel a certain distance depends on your average speed. The faster you drive, the sooner you arrive. Therefore, one option is to redline your vehicle the entire way, drive 150 miles per hour and arrive at your destination in 40 minutes. Obviously, this is not feasible because there are other considerations, such as the law, safety, and your fuel efficiency. Another option is to play it safe, avoid the highway and make the drive at 40 mph. This way, you get there in 2.5 hours; longer than you would like, but at least you are still alive with your driver’s license. The best solution exists somewhere in the middle of these extremes.

So how do you find the happy medium? Engineers specialize in graphing all possible solutions for visualization. To make such a graph, you need the relevant equation, which is distance traveled equals velocity multiplied by time. You need to rearrange the equation to isolate the dependent variable (time) as a function of the independent variable (speed); time = distance/speed.  Here’s what it looks like for a 100-mile journey:

 

Looking at this graph offers a few benefits. For one, it becomes easy to compare several solutions. If you drive 60 mph your trip takes 1 hour, 40 minutes. Going 70 mph saves you 15 minutes compared to going 60. You also learn gain valuable insight about the problem. Notice that the faster you drive, the less time you save. In other words, driving 50 mph vs 40 mph saves 30 minutes, while driving 80 mph vs 70 mph only saves 11 minutes. Therefore, you might conclude that the risk of speeding does not outweigh the small payoff.

Bringing it back to my thesis of this blog, anyone can think like an engineer. Engineering isn’t difficult. It seems difficult, because most engineers like to shroud what they do in fancy math-speak to seem important. Don’t let them fool you, their thought process is no more difficult than choosing a can of tuna fish from the grocery store.

Thinking Out Loud: Productive Thoughts from Unproductive Seminars

by, VJ Tocco

Each Monday at 4 PM, our department invites a speaker from another university to deliver a seminar presentation about his or her research. Most of these people are brilliant, much smarter than I will ever hope to be. Yet, every presentation, roughly one-third of the way through, I become physically ill with boredom. I do anything I can to entertain myself, including crossword puzzles, doodling, and reciting rap lyrics silently in my head. The time slowly creeps by as the speaker drones on and on until the conclusions slide finally appears on the screen, mercifully signaling the end of the talk.

This weekly ritual is deeply tragic because companies and government agencies spend an absurd amount of money to fund research projects, and yet nobody in the audience learns anything. I can’t speak for my colleagues, but the percentage of noses buried in phones or papers during the presentation gives me a hint.  The reality is that even the best research cannot be perceived as interesting if the presentation is horrible.  During a particularly painful seminar a few weeks ago, I did some meta-thinking about why seminars are unbearable week after week. This treatise is the product of that seminar.

In my first year of attending these lectures, I struggled with lacking the intellectual capacity to digest the material. I had always been able to follow any lecture in school if I put forth the effort, but try as I might to focus on every data point and conclusion of the seminar talks, none of them ever clicked. Only during my thinking session did I realize that my intelligence was not the problem; it was the communication skills of the presenter that were lacking. The thoughts contained in these seminars are often disorganized and difficult to follow. Many of my friends that don’t share my technical background sometimes lament they aren’t smart enough to understand what scientists do. I wholeheartedly disagree; I think they just haven’t had technical subject material presented appropriately to them.

So why can’t scientists just keep it simple and communicate their research effectively to a broad audience? I came up with several reasons. Some scientists are pretentious egomaniacs and intentionally confuse the audience to make their work seem profound. Other scientists are simply negligent in considering exactly what the audience knows or does not know. A third class of scientists have discussed their specific area of research in so much depth with other experts that they have difficulty taking a step back to look at their work from a broader perspective.  But perhaps the biggest reason why scientists struggle to communicate is because scientists rarely put conscious effort into organizing their thoughts.

Communication and thought organization fall under the umbrella term soft skills, which includes other desirable non-technical attributes such as teamwork, work ethic, and professionalism.  I personally find the absence of these topics in the curriculum (at every level of education) deplorable. I've heard some faculty members use the term "soft skills" pejoratively, insinuating that soft skills are trivial when compared to hard-core chemical engineering topics like fugacity, the Navier-Stokes equations, and transfer phenomena. Isn't that asinine? Over the past few months, I've taken my soft skills education into my own hands, researching, experimenting, and practicing different techniques to improve. I've been proud of my progress, but frustrated that I've had to discover these topics on my own.

One might argue that everyone learns how to communicate and organize thoughts in high school, but I personally became an engineer because I hated the abstract essays that my English teachers used to assign about the literary prose du jour. I was never any good at speculating on the author’s intentions in flowery literature. Those assignments taught me how to complete an assignment, but they did not teach me how to think. Perhaps the actual process of learning how to think must come from within (I hate those types of abstract cliches, but I think that one plays here), not an assigned topic.

I urge anyone who wants to increase their communication or thought organization skills to 1) teach yourself how to write and 2) write as much as you can. Write on something you know. Write about anything you see going on in the world that interests you. Formulate unique opinions and craft them into an essay. I’ve learned that almost everybody has something unique to say about something. Or a unique perspective shaped by their experiences. Yet, few people have the ability or courage to communicate those thoughts. My high school basketball teammate Chris Sinagoga is a great example.  He was never interested in literature class, but man, can he write an essay about Lupe Fiasco's wordplay. The thought process that goes into crafting an argument is independent of the subject matter. Don't be like our seminar speakers. Do what I’m trying to do.  Find a topic you’re passionate about, write about it, and publish it somewhere on the internet. You will be surprised by how quickly your communication skills develop.

New Guest Post Series + May Price Adjustment

As we have done in the previous years, we will need everyone to add a little extra to their payment for May - this year is $15 per person. This fee is added to cover you until June 12, at which point the Champions Club Summer 2017 will begin and the normal Summer price will be in play. More on that in a few weeks.

But again, add $15 to your May payment and it will cover you from May 1 through June 12.


In more exciting news, there will be a new guest post series appearing periodically, similar to the thing Mel is doing. This one will be off-topic, but will surely relate to lots of you smart folks.

You may have noted that we've had a new name to some of the comments sections. VJ Tocco is not a Mel from North Carolina, or a Concerned Fitizen alias that Jacob/Morrow/Brian use to post. In fact, VJ is a high school classmate of mine who also played football and basketball with me. He's been checking in and out with the site for some time now, and has commented on posts like Flaw in the Grade Scale and the Eminem post, and was a big fan of Untitled/Unedited Rant from somewhere around 1998.

VJ went to the graduated from the University of Michigan a few years ago, and now attending grad school at Florida. He's one of those engineering people who is doing things in the nerd-world, I believe chemistry to be specific, but I could be wrong. What I have always found odd about VJ was on the outside you would never guess him to be q brainy-type. He wore baggy shorts, memorized Ice Cube lyrics, could debate 1st Generation Pokemon with the best of them, and knew who Mich Richmond was. In fact, I didn't know he was good at school until I sat next to him in AP Biology, where he was almost single-handedly responsible for me passing the class.

In recent weeks, he's shared some rather interesting opinions with me about his field and how to go about starting a blog where he can share his thoughts. After reading his first installment, I thought it would be a great idea for him to use this site as his outlet because we have a lot of academics in our mix. I'll let you guys be the judge, but I think you'll find VJ's post a good detour from our normal content and an entertaining insight into the topics he chooses.

If you needed any more convincing, he met Flo Rida this summer.

If I had Chris Binno's arms I could reach from here to Florida to touch VJ's hand. But I don't so I'm sad. VJ's guest post series is yet to be titled, but be on the lookout for it starting in early May.